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Abstract: Interval models may be used in many cases to express the imprecisions
and uncertainties of the systems. Envelopes are a way to represent the results of the
simulation of these models. One of their applications is as reference behaviour for Fault
Detection (FD) based on analytical redundancy, so their properties (completeness,
soundness) have important consequences on the FD results (missed and false alarms).
This paper presents the Modal Interval Simulator (MIS) that approaches this problem
by means of error-bounded envelopes. Sliding time windows have to be used for long
simulations, depending the adequate window length on the type of the fault. MIS
allows to the user to work with several window lengths simultaneously. Copyright
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1. INTRODUCTION

The mathematical quantitative models, i.e. mod-
els in which the values of the parameters are real
numbers, are simplifications of the reality and
hence the behaviour obtained by simulation of
these models differ from the real one. The use
of complex quantitative models is not a solu-
tion because in most cases there are uncertainties
and imprecisions in the system which can not be
represented with this kind of models. A way to
represent them is by using qualitative or semiqual-
itative models. A model of this kind represents a
set of models indeed.

The simulation of the behaviour of quantitative
models provides a single trajectory across time for
each output variable. This can not be the result
of the simulation when a set of models is used. In

this case, one way to represent the behaviour is
by means of envelopes.

2. ENVELOPES

In geometry, an envelope is defined as the curve
that is tangent to each member of a system
of curves. In this work, the set formed by the
upper envelope and the lower one is referred to as
envelope and the set of curves is formed by all the
possible trajectories across the time of the output
of the system. Two properties of this envelope are:

e Completeness: it includes all the possible
behaviours of the model.

e Soundness: every point inside the envelope
belongs to the output of at least one instance



of the model, i.e. one of the quantitative
models that belongs to the set of models.

Notice that this is the terminology used in (Struss,
1990). Some authors use the same words in the
opposite sense (Weld and de Kleer, 1990).

3. GENERATION OF ENVELOPES

Assume that a particular system may be modelled
by means of a difference equation. For instance,
a n-th order dynamic SISO (Single Input, Single
Output) system can be modelled by the following
generic difference equation:

n p
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This equation shows that the output of the system
at any time point (y;) depends on the values of
the previous outputs (yx—;) and inputs (up—j).
This dependence is given by the parameters of the
system model (a; and b;).

There may exist some uncertainty in the param-
eters of the model, in the input or in the initial
output yo, which can be represented by means of
intervals. In this case the difference equation can
also be seen as the expression of a function into
a parameter space that has the shape of a hy-
percube and its number of dimensions is the sum
of interval parameters appearing in the function:
inputs, outputs and parameters of the model.

For instance, in the simplest case when n = 1 and
p = 1, i.e. the system is a first order one, the
functions of the first steps are:

Y1 = a1yo + bruo (2)
Y2 =a1y1 + biug
Y3 = a1y2 + byuy

One way to compute the limits of the envelope
at a time point ¢ is determining the range of the
function of this time point in its parameter space.
If the system is considered time variant, these
functions can be considered independent. How-
ever, if the system is considered time invariant,
there are parameters and variables that appear
in more than one equation so there are depen-
dencies that must be considered. The proposed
approach is to make the multi-incidences explicit
by merging the different equations starting from
0 into a unique expression on which the range is
computed. This expression is obtained in a recur-
sive way by substituting y; within the previous
equation down to yg. In this case, the range of the
following functions has to be determined:

Y1 =a1Yo + biug (3)
Y2 = a%yo + a1biug + biug

Y3 = a?yo + a%bluo + arbiur + brus

Therefore, the length of the function y;, is larger
when k is larger. Moreover, usually the parameters
a; and b; are functions of physical parameters and
there are non-linearities in the model. All these
things make the determination of the range of the
function a hard task. It may be approached, for
instance, using algorithms of global optimisation
or consistency checking.

In many cases, only approximations to the range
are obtained and hence the result is an approxima-
tion to the envelope. Then, in a broader sense, the
envelope that is complete and sound is referred to
as the exact envelope whereas a complete (resp.
sound) approximation to the exact envelope is
referred to as a complete (resp. sound) envelope.
Furthermore, a complete but not sound envelope
is called overbounded and a sound but not com-
plete envelope is called underbounded.

4. ENVELOPES AND FAULT DETECTION

One possible use of the envelopes is for Fault De-
tection (FD) by means of analytical redundancy.
A fault is an unexpected change in a system, such
as a component malfunction and variations in the
operating condition, that tend to degrade overall
system performance (Chen and Patton, 1998).
Consequences of degradation are not only eco-
nomic loss, they can be extremely serious in terms
of environmental impact or danger for the popu-
lation. In order to design a reliable, fault tolerant
system, or to maintain a high level of performance
for complex systems it is crucial that such changes
are detected promptly and diagnosed so that cor-
recting action can be taken to reconfigure the
system and accommodate the change.

Redundancy is a widely used technique to detect
faults. It consists in comparing the behaviour of
the system with a reference one. The discrepancies
between these two behaviours indicate a change
in the behaviour of the system, i.e. a fault. In
the case of analytical redundancy the reference
behaviour may be obtained through simulation of
a model of the system.

When envelopes are used for FD, the system
is guaranteed to be faulty when the measured
output of the system is outside of the envelope
(Travé-Massuyes et al., 1997). However, the sys-
tem may also be faulty when the measure is inside
the envelope. This is due to the dynamics of the
system. The measure can remain inside the enve-
lope for some time after a fault has occurred or
even it never goes outside, for instance if the fault



only lasts for a short time. In these cases the fault
is not detected or, if it is detected, some time,
depending on the distance between the actual
system parameter values and their nominal values,
is needed to detect the fault. If this distance is
small, the time is larger.

This is what would happen if the exact envelope
was used. If the envelope used for fault detection
is overbounded there can be missed alarms: the
system is faulty but it is not detected because
the measured output remains inside the envelope.
If the envelope is underbounded then there can
be false alarms: the system is said to be faulty,
although it is not, because the measure goes out
of the envelope. Therefore, these properties of the
envelopes are very important when they are used
to detect faults. These properties are assessed
for several simulators for uncertain systems in
(Armengol et al., 2000).

5. ERROR-BOUNDED ENVELOPES

The approach proposed in this paper is the use of
error-bounded envelopes. This consists in the si-
multaneous computation of an underbounded and
an overbounded envelope. These two envelopes
determine three zones: the inner zone included
in the underbounded envelope, the intermediate
zone between the two envelopes and the outer
zone outside of the overbounded envelope. If the
measure is outside of the overbounded envelope,
the system is guaranteed to be faulty. If the mea-
sure is inside the underbounded envelope nothing
can be said because either the system is not faulty
or if the system is faulty it can not be detected
using these tools. Finally, if the measure is in
the intermediate zone between the two envelopes
the situation is one of the two that have been
presented above but, to decide which one of them,
better approximations to the exact envelope are
needed.

An iterative algorithm to compute the two en-
velopes has been designed. It is a branch and
bound algorithm that tightens the overbounded
envelope and widens the underbounded one at
every iteration. The stopping condition is given by
the location of the measured output of the system.
If it is in the outer zone, the algorithm stops
because it has already been detected that the
system is faulty and hence it is not necessary to
compute better approximations of the envelopes.
If it is in the inner zone, the algorithm also stops
because the measurement would remain in this
zone even if better approximations would be com-
puted. Finally, the algorithm keeps iterating if the
measurement is in the intermediate zone.

This algorithm is based on an interval model, that
is a model in which the parameters may take

interval values instead of real numbers, and on
Modal Interval Analysis (MIA).

MIA (SIGLA/X, 1999) is an extension of classi-
cal interval analysis. The main difference is that
interval analysis identifies an interval by a set of
real numbers, whereas MIA identifies an interval
by the set of predicates that are fulfilled by the
real numbers. Then, a modal interval is defined
by a pair

X = (X', QX) (4)

In this pair, X' is called the extension, X' €
I(R) = {[a,b]' |a,be R, a<b}. QX is the
modality, QX € {E,U}. The existential modality
E indicates that at least one element in the
interval fulfils a predicate whereas the universal
modality U indicates that every element in the
interval fulfils it.

The dual formulation of the modal intervals allows
the definition of two modal interval extensions
of functions, noted by f*(X) and f**(X) re-
spectively, which provide meaning to the interval
computations. In the case of the envelopes, it
can be said that the *-extension is complete and
the **-extension is sound. Therefore, when both
extensions are equal the result is exact.

Unfortunately, the computation of the *- and
**_extensions is, in general, a difficult challenge.
MTA provides tools to find overbounded computa-
tions of f* (X) and underbounded computations
of f**(X) which maintain the semantic inter-
pretations. These computations are made taking
into account the multi-incident variables in the
functions, which is a source of overbounded results
when interval arithmetic is applied. The coercion
theorems provide the conditions and the way to
obtain optimal extensions when there is mono-
tonicity. If the function is not monotonic for each
multi-incident component, these theorems can be
partially applied in order to reduce the complexity
of the problem. Finally, a way to obtain even bet-
ter approximations is by splitting the parameter
space.

These features have been implemented in the
branch and bound algorithm, which is pro-
grammed in C++. The simulator MIS (Modal
Interval Simulator), which is based on this algo-
rithm, is implemented in Matlab and also uses
Maple.

6. AN ACADEMIC EXAMPLE

MIS has been used to simulate the behaviour of a
generic first order system

T kT
Yn = (1 - ;) Yn—1 + —Un-1 (5)



with the following parameters:

static gain: k = [0.95, 1.05]

time constant: 7 = [5,20] s

initial state: yo = [0, 0].

input: steps of different lengths and heights.
sampling time: T'=1 s.

This simulation is used to detect that the generic
first order system

is faulty when its parameters degrade with time:

EOT
) "t (©6)

o Static gain:
k (t) = ko + myt (7)

with kg = 1.05 and m; = —0.001 %
e Time constant:

T(t):T0+mTt (8)
with 79 = 5 s and m, = —0.04 .

As the nominal values are k& = [0.95,1.05] and
7 = [5,20] s, initially the system is not faulty and
the time constant gets more and more far from its
nominal value with time.

Figure 1 shows the results of the simulation. The
upper half of the figure shows the error-bounded
envelopes (the overbounded envelope in solid line
and the underbounded envelope in dashed line)
jointly with the output of the faulty system
(crosses). The lower half of the figure shows the
FD results indicated in the following way:

e fault = 1. The measurement is in the outer
zone. The fault is detected.

e fault = 0. The measurement is in the inner
zone. The fault is not detected.

It may be observed that there are several time
points where the overbounded envelope is much
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Fig. 1. Fault detection using error-bounded en-
velopes.

overbounded. In fact, the overbounded envelope is
outside the figure at some of these points because
of the scale that has been used. At these points the
overbounded envelope is so overbounded because
at one of the first iterations of the algorithm
already has been seen that the measurement is
in the inner zone so it is not necessary to obtain
better (less overbounded) approximations of it.
This means that these results have been obtained
with a small computational effort.

7. SLIDING TIME WINDOWS

It has been seen above that if the parameters of
the system are assumed to be uncertain but time
invariant, the envelopes at each time step have to
be computed starting from the initial state. This
is the way to assure that each parameter of the
model varying within an interval is kept at the
same value at every step of the simulation. The
drawback of this method is that each step of the
simulation needs more and more computations.
This makes the algorithm unusable for long sim-
ulations or on-line simulations.

An approach to this problem is the use of sliding
time windows. In this case, the envelopes at a time
point y; are computed starting from the past state
that is at a distance equal to the length of the
window y;_.,. A consequence of the use of sliding
time windows is that the parameters of the model
have to maintain their value in the window but
may have different values in different windows.

On the other hand, using sliding time windows
each measurement is used twice: at the current
step to detect faults and at a future step as
starting point of the window. This dependence of
the envelopes on the measurements may produce
missed and false alarms due to the uncertainty
associated to the measurements.

Therefore, the detection results may be different
for different window lengths. For instance, a sys-
tem becomes faulty if its performance is slowly
degrading across time until it goes under some
previously fixed requeriment, like the one in sec-
tion 6. But it is also faulty if there is a sudden
fault, for instance a breakdown. Therefore, there
is a relation between the ability to detect a par-
ticular type of fault and the window length used.

8. MULTIPLE SLIDING TIME WINDOWS

This is shown in the example of figure 2. This
example is taken from a real system: a part of a gas
turbine used in the TIGER, Esprit project (Milne
et al., 1994). The data that have been used are also
real. The scenario is formed by approx. 60 s of data
collected when there were not faults and about



T e | |
e | |

wess ][] j
Y weas UL LTI
TSI TR

0 20 40 60 80 100 120 140 160 180
time (s)

Fig. 2. Fault detection using multiple window
lengths.

100 s being the system faulty. The figure shows
the indications of fault using different window
lengths w. It can be seen that w = 1 s gives
false and missed alarms and longer windows give
better results. When the windows are too short
sometimes the faults are not detected because the
envelopes ”follow” the measurements. The system
is considered time variant and it is allowed that
the parameters of the model vary at a high speed.

Figure 3 shows another example with the same
system known to be faulty between approximately
110 and 160 s. The results are similar to the
previous example: shortest windows do not obtain
good results. Furthermore, in this case, the figure
shows that longest windows do not detect the
fault.

These and other examples show that there is
not an ideal window length. The length that
neither produces false alarms nor misses them
depends on the particular system and also on the
type of fault. MIS helps the user to deal with
this question allowing the use of several window
lengths simultaneously.
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Fig. 3. Detection of a short duration fault.

9. CONCLUSIONS

The semiqualitative simulator MIS has been de-
veloped. It converts the simulation problem into
a range computation one by means of the discrete
model of the system. Two approximations to the
range of a function are computed at each step of
the simulation by means of an iterating branch
and bound algorithm based on Modal Interval
Analysis. The results of the simulation are error-
bounded envelopes, i.e. an underbounded enve-
lope and an overbounded one.

The error-bounded envelopes have been applied
to Fault Detection as reference behaviours for
analytical redundancy. The system is guaranteed
to be faulty if the measurement is outside of
the overbounded envelope. This is the reason to
use the location of the measurement to stop the
iterating algorithm. When it is in that zone or
inside the underbounded envelope the algorithm
stops. Sometimes this happens when the error
between the envelopes is big, but these envelopes
are enough for FD so it is not necessary to perform
more computations to obtain better approxima-
tions to the exact envelope.

When the system is considered time invariant,
each step of the simulation needs a computational
effort greater than the previous one. This makes
this method unusable for long simulations. To deal
with this problem, sliding time windows have been
implemented. The measured output of the system
is used as the initial state of each window. The
adequate length of the window depends on the
particular system and on the type of fault to
be detected. To help the user to deal with this
question, MIS allows the simulation using several
window lengths simultaneously.

MIS has been used to detect faults in several
systems, both academic and real. The results show
that the indications of fault using multiple window
lengths can be used not only to detect the faults
but to identify the type of fault. A possible future
work consists in the design of a higher level system
to perform this task.
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